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Abstract

At the heart of many challenges facing modern-day Artificial 
Intelligence lies the Symbol Grounding problem, a theoretical 
impediment  for  computers  to  understand  the  meaning  of 
symbols. It is argued that dealing with this problem begs for a 
multi-disciplinary  approach,  drawing  from  a  diversity  of 
fields such as philosophy, sign theory, computer science and 
biology. The various denotations of symbols are meticulously 
analyzed, uncovering a hierarchy in the human interpretation 
process. It is explained how symbolic interpretation emerges 
from sub-symbolic components and how this transition may 
be  modeled using  a  neural  network simulation.  A series  of 
experiments is conducted in order to validate the capabilities 
of this new model. 
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Before you study Zen, mountains are mountains and rivers are rivers;

while you are studying Zen, mountains are no longer mountains and 

rivers are no longer rivers; but once you have had enlightenment, 

mountains are once again mountains and rivers again rivers.

– Zen koan
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Introduction

Throughout history, various technological innovations have been treated as metaphors for the 
human brain. The mechanics of a steam engine, the accuracy of a watch, and more recently 
the interconnected computer grid that forms the Internet have all been compared to our own 
thought processes. But, more than any other device, the computer has been and remains to be 
the  most  convincing  example  of  a  mechanical  brain.  The  similarities  are  striking:  vast 
amounts of small processing units guiding electronic signals, translating input to output or, in 
the case of robots, mechanical behavior. It manages to solve algebraic equations, play a game 
of chess or fly an airplane. Although there are currently still many areas of expertise where 
humans outperform computers, it seems that given the right program and a robotic body, a 
computer can do almost anything we can do. 

In fact, the computer and the brain are so alike, that people have started to ask questions 
about the nature of computational minds. Are these machines doing the same thing we are 
doing? Do they really understand their actions? Are they conscious beings, like us? Although 
these kinds of questions often originate out of philosophical curiosity, finding the answers is 
of  no  less  practical  importance  to  Artificial  Intelligence  research.  Several  technical 
difficulties, many of which have surfaced over the past decades, can be directly attributed to a 
lack of understanding of these philosophical issues.
 
Specifically,  the  question  whether  computer  programs are  capable  of  meaningful  symbol 
interpretation  has  received  much  attention,  and  it  is  often  suggested  that  having  such  a 
capability is a necessity for a computer to take part in a natural language conversation. For 
example, Terry Winograd notes that

"Programs can manipulate linguistic  symbols with great  facility,  as in word-
processing  software,  but  attempts  to  have  computers  deal  with  meaning  are  
vexed by ambiguity in human languages"

                  (Winograd, 1984, p. 102)

Considering the important role of language in human intelligence, one would naturally expect 
meaning to be a significant part of any artificial intelligence program. However, this is easier 
said than done: when one actually undertakes the effort to build a computer program capable 
of meaningful interpretation, several serious obstacles are encountered. The first chapter of 
this  thesis  introduces  a  few  of  these  problems  and  discusses  two  notable  objections  in 
particular: the Chinese Room Argument (Searle, 1980) and the Symbol Grounding Problem 
(Harnad,  1990).  These  two  ideas  will  recur  throughout  the  thesis  as  they are  canonical 
exponents of the underlying central theme: the problem of computers dealing with meaning.
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Although  its  name  might  suggest  the  possibility  of  a  solution,  the  Symbol  Grounding 
Problem is  in  fact  a  fundamental  constraint  on the  interpretation skills  of  computers  -  it 
cannot be solved  an sich  (Vogt, 2002). That is why we will approach the problem from a 
different angle, and investigate whether meaningful interpretation is possible in other systems 
than the traditional rule-based symbol systems. Hence, our main research question will be as 
follows:

“How are symbols to be represented, and how do we show the advantages of  
symbolic representation?”

A complex question like this begs for a thorough investigation. We will therefore approach it 
from several disciplines and search for the general foundations of symbolic interpretation. To 
this end, we will acquire a clear understanding of what symbols are. In chapter two, we learn 
that the word symbol is a rather ambiguous term; by clarifying its meaning we find a good 
starting  point  for  further  investigation.  While  the  notion  symbol  refers  to  a  simple 
correspondence between two tokens in some contexts,  in other settings it  denotes a more 
obscure relation that is subject to the knowledge of the interpreter. It turns out that these two 
meanings collate  with the notions  icon and  symbol,  respectively,  within the philosophical 
framework of C. S. Peirce (Deacon, 1997). We examine his theory of signs and interpretation 
further in order to gain an understanding of the nature of symbols.

It follows from Peirce’s sign theory or semiotics that icons and symbols are not merely two 
distinct  types  of  signs;  the  third  chapter  investigates  how they are  linked.  Using  several 
examples we demonstrate how three kinds of signs are related within a hierarchical structure. 
Symbols are constructed from indices, the third type of Peircean sign. Icons are a necessary 
part  of  indices.  At  this  point,  we  have  found  the  blueprints  for  a  symbolic  interpreter, 
allowing  us  to  leave  the  philosophical  domain  and  return  to  the  original  question  of 
representing symbols. 

In chapter four, we look for an application of this theory in order to answer the first part of 
the  research  question.  It  is  argued  that  neural  networks are  a  fitting  model  for  realizing 
symbolic  representations.  Following  an  overview  of  their  structure  and  mechanisms  in 
chapter  four,  we rephrase the hierarchical  ordering of signs from the previous chapter  to 
match the neural network architecture. Each of the signs is translated to a specific neural 
network, resulting in concrete models of an iconic, an indexical and a symbolic interpreting 
system.
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In order to answer the second part of the research question, we need to compare the learning 
capabilities of the indexical  and symbolic neural network models.  Aiming to validate our 
theory,  we  turn  to  a  chimpanzee  language  training  study  in  chapter  five.  It  shows  the 
difference between indexical and symbolic learning through analysis of the chimps’ token 
manipulation:  two different  learning  strategies  emerge,  each  with  its  own learning  curve 
(Savage-Rumbaugh, 1978). By translating the elements of this study to a setting that is fit for 
neural networks and testing the neural network models in a series of experiments, we too can 
discern a difference in learning and demonstrate the advantages of symbolic interpretation. 

In the final chapter of this thesis,  the results are summarized and the implications of this 
research are discussed.
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Chapter 1: The Symbol Grounding Problem 

The Chinese Room Argument

In his famous article Minds, Brains and Programs (Searle, 1980) the philosopher John Searle 
invites us to take place inside a computer and imagine what it is like to be one. We find 
ourselves in a room entirely sealed off from the outside world, except for a small window not 
unlike the iron framed vent found in many Chinese restaurants through which food is handed 
to the waiters. In this case, the window is used to deliver data in the form of a written note 
containing a question. The question is posed in a language we are unfamiliar with, Chinese 
for instance. Since we have no knowledge of that language, we will not be able to understand 
the question - let alone produce a correct answer in Chinese.

Fortunately, on a table inside the room we find a book, with on each page a set of rules like a 
sort  of  dictionary.  A normal,  Chinese-English  dictionary would  allow us  to  translate  the 
question,  formulate an answer in English and translate  it  back to Chinese.  However,  this 
particular dictionary contains only rules that point from Chinese characters to other Chinese 
characters.  The  rules  have  the  interesting  property  that  repeatedly  applying  them to  the 
characters on the question note will always lead to a correct answer, in Chinese. Answering 
questions has been reduced to an almost trivial execution: all we have to do is apply the rules 
and hand back the results through the vent. 

The  thought  experiment  above  brings  Searle  to  make  his  point:  do  we  usually  answer 
questions this way, or is there a difference in our understanding of the question? It appears 
that using such a rulebook is quite an odd way to answer a question. We generally know what 
questions are about in order to answer them. English words have meaning to us, and by virtue 
of their reference to other concepts we manage to formulate a reply. Chinese words lack any 
meaning; we can only discern them by noticing the different lines and dots that together form 
a  character.  Given  an  external  source  of  reference  containing  rules  for  each  of  these 
characters, we can use our ability to discern them to apply the right rules, without having the 
slightest  idea what  the question is about.  But is  this  discriminatory ability the same as a 
genuine understanding of symbols? Maybe the person on the other side of the vent,  who 
distributes questions and receives back our notes, thinks we do know Chinese. Surely, it must 
seem likely from that point of view that the characters have reference for us. However, likely 
as it may be, it is not necessarily the case.  

The same argument can be applied to computers. A program consists of a fixed set of rules, 
executed by a computer to maintain a state or provide a certain output. For example, we can 
design  a  simulation program that  predicts  the  probability of  traffic  jams based on a  few 
parameters like the average speed or the number of traffic lanes. There is no need for the 
computer to get into the details of reality here: the rules and numbers that refer to cars, roads 
or weather conditions to humans, are merely mathematical tokens for the computer. It can 
simply apply a number of abstract mathematical rules that are defined within the program, 

10



ending with a probability estimate. Instead of an iron vent we update the parameters with 
several sensors placed near roads and use the program’s output on road displays,  and the 
analogy with  the  Chinese  Room is  complete.  We  have  created  a  rule-based  system that 
appears to understand and solve a problem, while in reality it only applies to a number of 
simple  rules  which  were  designed  by  someone  who  did have  reference  to  the  problem 
domain.

The possibility of a pseudo-intelligent system, which only simulates  understanding, raises 
serious doubts about the validity of the claim that computational intelligence is similar to 
ours. From an outside perspective, how can we ever be sure of this claim without ruling out 
this  possibility?  For such a claim to be verified or  rejected,  a theory about the nature of 
computation is required that either explains the different modes of understanding Searle is 
referring to, or shows that all kinds of understanding are actually the same. Even if we choose 
to ignore the philosophical objections to the claim and just focus on practical applications, 
troublesome obstacles persist. 

At a first glance, a lack of understanding in computers may appear to be of minor importance, 
since a well executed computation does not  require  any knowledge of what the data stands 
for.  If a program would be equipped with enough procedures to appropriately handle any 
situation it encounters, we would probably not be able to discern it from an understanding 
system. So from a practical perspective, we might deduce that any differences in the level of 
understanding are trivial, provided that the output is correct. However, the assumption that a 
program  can  be  designed  to  handle  every possible  situation  simply doesn’t  hold  for  all 
domains. Given a setting with a constrained set of events and actions, the minimal number of 
rules required to handle every situation imaginable may still be relatively small. For example, 
the game tic-tac-toe has a very limited number of states, allowing for a full description of the 
optimal  action in every possible  state.  Nevertheless,  this  solution only goes as far  as  the 
complexity of  the task at  hand allows.  For  games like  chess or  backgammon, where the 
number of possible states exceeds the computer’s memory capacity, a different approach is 
clearly required.
 
Generally, as the domain within which the program acts grows larger, the complexity of the 
procedures will often follow. Programs that operate in unbounded domains, such as robotics 
or natural language, are particularly prone to encounter unexpected situations for which no 
rules exist. When communicating with a chat bot, one is likely to receive curious responses 
from time to  time.  One  might  say that  the  chat  bot  has  apparently  misunderstood these 
questions. However, this is a case of mistaken anthropomorphism: naturally, all questions are 
misunderstood  by  the  program  or,  rather,  not  understood  at  all.  A chat  bot  lacks  any 
connection to the subjects that are discussed in the conversation, so it can’t be said to either 
understand or misinterpret any questions. If anyone is to blame for the program’s incorrect 
response to a question, it is the programmer who, in his attempt to simulate a conversing 
human, has failed to anticipate this particular question. 
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The occasions in which comparable problematic situations arise are plentiful, and so are the 
names that have been coined for these kinds of problems. The Frame Problem (McCarthy & 
Hayes, 1969), originating out of situation calculus, describes the situation where every single 
part of a robot’s domain knowledge needs to be represented explicitly, even when things do 
not change as a result of an action. What we would consider to be trivial information is still 
required as a logical expression in the program, for example the rule that “a red box is still 
red  when you put  it  on top of  another  box”.  It  is  closely related to  the  Common Sense 
Knowledge  Problem (Dreyfus,  1981),  the  problem  of  representing  the  kind  of  implicit 
knowledge humans possess. Another canonical problem, which focuses particularly on the 
domain of symbolic knowledge, is called the Symbol Grounding Problem (Harnad, 1990). It 
deals with the nature of meaning and whether computers can understand symbols.

The manifestations of these and other, related problems express fundamental difficulties in 
the undertaking of modeling intelligence with computers.  A related issue is  raised by the 
Chinese Room Argument. In order for us to obtain a better understanding of the root of these 
problems we will  examine the Symbol Grounding Problem more closely, as it  is a recent 
formulation that expresses these difficulties in a particularly clear way. 

The Symbolic Merry-go-round

When Alan Turing, one of the founding fathers of computer science, was looking for a way to 
test a program’s intelligence, he devised the Turing Test (Turing, 1950). It involved a human 
subject having a conversation with either another human being or a computer program. Right 
after this dialogue, the subject would have to guess whether its conversation partner was a 
person or a computer. To avoid any predispositions derived from external features, such as 
the  computer’s  appearance  or  word  pronunciation,  all  conversations  would  appear  on  a 
monitor and the subject would have to type its responses using a computer terminal. This 
way,  the  anonymity  of  the  conversation  partner  would  be  guaranteed  and  the  subject’s 
judgment would be based exclusively on the dialogue’s semantic content. If a majority of the 
subjects  repeatedly failed  to  make  correct  guesses,  Turing  concluded,  then  we would  be 
forced to accept the computer program as an intelligent entity, as its conversation capabilities 
were undistinguishable from those of humans.
 
It  is  not  a coincidence that  both Turing and Searle  chose natural  language as the crucial 
testing  ground  for  a  comparison  between  humans  and  computers.  The  capability  of  any 
system to exert  this  typically human way of  communication  forms an ideal  criterion  for 
determining  its  level  of  intelligence:  not  so  much  because  recognizing,  writing  and 
pronouncing symbols  form such insurmountable  barriers,  but  because  a conversation  can 
basically be about anything. The domain of language is unbounded, making the rule-based 
dictionary solution an insufficiently equipped approach for passing the test. To deal with all 
possible topics, a dictionary would have to include every single answer imaginable, making it 
practically infeasible. A more sophisticated solution would have to be found.
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Turing and Searle both identify language as the decisive benchmark test, but whereas Turing 
is  satisfied  with  empirical  evidence as  a proof  for  intelligence,  Searle  uses a more  strict 
definition: only if a system understands language the same way we do – a functional criterion 
– will the claim for its intelligence be verified. When applied to the Chinese Room, both of 
these requirements fail to make any unambiguous claims, though. Searle strives to define the 
difference by pointing to the term understanding. However, without an operational definition 
of  this  term  his  argument  remains  philosophical,  rather  than  scientifically  verifiable. 
Switching to  the  external  perspective  of  the  Turing  Test,  the  difference  in  understanding 
between using a dictionary and using domain reference is undistinguishable and therefore not 
relevant according to Turing. But it is questionable whether such a dictionary could really 
exist, given the problems with the domain of natural language that were discussed previously. 
What other approach would solve this problem?

Perhaps the most straightforward solution would be to put another dictionary in the room, 
containing translations from Chinese to English symbols and vice versa. The person inside is 
now capable of translating the characters into a familiar language, understand the question 
and  answer  it  correctly  without  ever  consulting  the  first  dictionary.  From  the  outside 
perspective of the Turing Test there would be no difference perceivable, while the approach 
itself  is  now  viable:  the  previous  dictionary  containing  all  possible  rewriting  rules  –  a 
practical impossibility - is now replaced by a normal language-to-language dictionary. On top 
of  that,  Searle’s  critique  would  be  avoided  altogether,  since  the  person  uses  his  own, 
understanding intellect to answer the question.

Unfortunately,  as  Stevan  Harnad  argues  in  his  article  The  Symbol  Grounding  Problem 
(Harnad, 1990), the problem is not that easily solved. A translation of the symbols of one 
language  to  another  would  certainly  enable  humans  to  hold  an  intelligent  conversation. 
However, recall  that the Chinese Room Argument compares computers with humans. The 
analogy becomes invalid once we invoke a capacity that is available for the one and not for 
the other. Humans already have a language in which their knowledge about the world can be 
expressed, but for a computer such a grounded language is not available. A computer needs to 
find the meaning of its own symbols from scratch, like children learning their first language. 
Translating unknown symbols into another meaningless language doesn’t give them meaning; 
it only leads to infinite regress. As Harnad puts it:

"Suppose you had to learn Chinese as a first language and the only source of  
information you had was a Chinese/Chinese dictionary! This is more like the  
actual task faced by a purely symbolic model of the mind: How can you ever get  
off the symbol/symbol merry-go-round? How is symbol meaning to be grounded  
in  something other  than just  more meaningless  symbols? This  is  the  symbol  
grounding problem." 

(Harnad, 1990, p. 338)
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So, simply grounding symbols  in another language evades the real question at hand. The 
solution relies  on knowledge not  available in any computer.  The only way to get  off the 
symbolic  merry-go-round Harnad refers  to  would be to  make the  semantic  interpretation 
intrinsic  to  the  system.  Not  by  creating  a  program that  manipulates  symbols  that  have 
meaning to us, but by making sure the program itself knows what the symbols refer to. That 
way, it will be able to understand the meaning of its expressions and, following the claims of 
both Turing and Searle, it will demonstrate a form of intelligence that is comparable to ours. 
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Chapter 2: What are Symbols?

The Meanings of Symbol

In the previous chapter we have used the Chinese Room Argument to introduce the Symbol 
Grounding Problem, a central question in Artificial Intelligence research. The discussion that 
resulted from the argument’s publication forms an excellent starting point for an analysis of 
the  problem,  as  proponents  and  opponents  have  confronted  each  other  with  interesting 
reasonings to prove or disprove the validity of the thought experiment. Generally, opponents 
of the argument criticize Searle’s claim that there are two different modes of understanding. It 
may intuitively feel like there is a genuine difference between using a rulebook for Chinese 
questions and answering an English question without one;  but,  according to many of the 
argument’s critics, this is merely an illusion. They claim that the two modes of answering are 
actually one and the same and we are fooled by the subjective experience of understanding. 
This position assumes our brains can be modeled like the rules of a dictionary, implying a 
rather mechanistic view of the human brain. Some take it one step further and claim that 
humans have a kind of dictionary in their heads, with rules matching the symbols on the 
sheets.  If  so,  then  it  is  irrelevant  whether  these  symbols  are  English  letters  or  Chinese 
characters, since all that matters now is that they match with the brain’s rule-based system.

Contrarily, Searle and his supporters argue that the brain does not work like a dictionary. A 
person who understands Chinese does not  match  symbols  on a  piece  of  paper  to  similar 
symbols in the head, after which he applies the corresponding rule. They claim that, apart 
from their physical appearance, the lines and dots that form Chinese characters carry meaning 
about something that may be entirely unrelated to paper or ink. These tokens are a set of 
carefully constructed lines and dots, drawn to convey a specific message. Of course, this view 
alone does not  yet  rule out  the mechanistic  position,  but  it  does hint  towards a different 
perspective  on  the  process  of  understanding.  Unlike  a  dictionary,  where  all  meaning  is 
encompassed in the rules, the brain actively connects symbols to what they stand for, giving 
them  a  form  of  reference  beyond  their  merely  being  connected  to  other  symbols.  For 
someone who is familiar with a language, symbols stand for something. Because of this, he is 
capable of understanding a sentence. 

Properly indicating  the  crucial  point  of  difference  between  these  two  standpoints  would 
require an accurate model of the process of understanding. However, lacking such a theory at 
this point, we can begin by analyzing the arguments put forward in the debate to expose the 
differences.  Not surprisingly,  the main point  of  discussion concerns  the way symbols  are 
processed. Symbols are either manipulated according to a rule matching their appearance, or 
they are connected to a concept they stand for and manipulated according to the logic of their 
referent. That the former is true when an Englishman is confronted with a Chinese dictionary 
is acknowledged by both parties; they only disagree whether, in the latter case, the person 
understands the symbols. Thus, the main distinction between the opposing parties is about the 
definition of symbols themselves. Are they simply perceived, recognized and manipulated 
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accordingly? Or is there a more complex process involved, in which their referents play an 
important role? It appears that, in order to answer the question of how symbols can have 
meaning, these two meanings of the word symbol themselves need to be explained. 

The two positions can be placed in a wider perspective: in his article Universal Grammar and 
semiotic constraints  (Deacon, 2003), the American anthropologist Terrence Deacon argues 
that  the definition  of symbols  in fields such as computer  science,  mathematics,  cognitive 
science and recent philosophy deviates from the way the term is used in the humanities and 
social sciences. He uses the following characterizations:

Computation: A symbol is one of a conventional set of tokens manipulated with  
respect  to  certain  of  its  physical  characteristics  by  a  set  of  substitution,  
elimination, and combination rules,  and which is arbitrarily correlated with  
some referent.

Humanities: A symbol is one of a conventional set of tokens that marks a node  
in  a  complex  web  of  interdependent  referential  relationships  and  specific  
reference is not obviously discernible from its token features. Its reference is  
often  obscure,  abstract,  multifaceted,  and  cryptic,  and  tends  to  require  
considerable experience or training to interpret.

(Deacon, 2003, p. 116)

These definitions call for further examination of the respective fields, to understand how and 
why they are rooted in them. Consider once again the principal target of Searle’s criticism: 
the traditional symbol system approach to AI, expounded by Allen Newell and Herbert Simon 
(Newell & Simon, 1976). According to the computational definition of symbols, a program 
manipulates electronic bit tokens, governed by a fixed set of formal rules.  The functional 
relations between these symbols are already explicitly defined in the rules, leaving no room 
for any additional reference. The programmer has intentionally used an isomorphism, a one-
to-one relation between the symbols and the world to which these symbols refer, preserving 
the relations existing between the elements in both domains,  and translated the referents’ 
actions into a set of algorithmic operations. The relation between these domains that was once 
required to find the isomorphism has now become irrelevant. 

The computational definition of symbols should be seen in the light of the sometimes arduous 
struggle to find a new isomorphism. For complex domains, it can be rather difficult to find a 
system of relations that works correctly. But, once the rules are designed correctly, applying 
them is relatively straightforward: all it requires is repeatedly recognizing a symbol, followed 
by the  execution  of  an  explicit,  unambiguous  rule.  Compared  to  the  computer’s  task  of 
symbol interpretation, finding rules for the production and manipulation of symbols is by far 
the more difficult part of computational symbol processing.
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Interestingly, the reverse is true for the social sciences. The emphasis is not so much on sign 
production and manipulation of symbols, but rather on the importance of interpretation. Take 
for instance an anthropological study of a tribe. One might find culture-specific rituals and 
tokens whose meaning is only understood by members of the tribe. The references of these 
objects  and  events  are  unlikely  to  be  found  by  a  superficial  investigation,  as  it  takes 
considerable effort  to learn to understand these symbols.  The symbols  are often part  of a 
complex set of conventions, whose relations are interdependent on each other. To understand 
the meaning of a particular tribal ritual requires knowledge of the social conventions of that 
tribe, much like the interpretation of a word requires knowledge of language conventions. 
These conventions allow the interpreter to translate a system of relations from one domain to 
another. In the case of a sentence, the words are translated from the domain of language to the 
domain of objects. As the symbol and referent are part of different domains, their connection 
is indirect, thus the interpreter is required to have a good grasp of both domains in order to 
discover this relation.

The  difference  between  the  two  definitions  is  subtle.  One  might  conclude  that  the 
computational definition of a symbol is a somewhat stripped down version of the humanities’ 
definition.  In  the  former,  the  interpreter  may lack  any knowledge  of  the  domain that  is 
referred to, while still being able to produce an adequate response to a signal; in the latter, 
this domain specific knowledge is an essential part of the sign. In order to further elaborate 
on the difference, a theoretical foundation for the continued study of these signs will be 
introduced in the next section.

Semiotics

Although signs have been studied since the earliest manifestations of philosophy, the study of 
signs started to gain serious attention near the end of the 19th century. One of the founding 
fathers of the field is the American philosopher Charles Sanders Peirce (1839-1914) who, 
among many other accomplishments, formulated the logic of pragmatism. He coined the term 
semiotics to denote the study of signs and sign interpretation, a term that is still used today 
(Chandler, 2002). Peirce’s theory about the process of interpretation, or semiosis, covers both 
the interpretation of natural signs, such as medical symptoms, as well as conventional signs, 
which were intentionally designed to convey a message. As symbols are a particular type of 
sign,  they are  studied  extensively in  semiotics.  A sign’s  meaning  is  relative  to  whoever 
interprets it;  one may therefore say that symbols stand for something  to someone.  Peirce 
stresses  the  importance  of  the  interpreter  –  human,  animal  or  any  other  system  which 
interprets signs – making it a most relevant theory for intelligent systems research. Whereas 
some would characterize a sign interpretation as

X is a sign of Y
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Peirce includes the interpreter in the expression (Hookway, 1985):

Z interprets X as a sign of Y

So,  whether  someone  interprets  a  sentence  as  a  meaningful  expression,  a  sequence  of 
unknown  words,  or  a  set  of  ink  marks  on  a  piece  of  paper  will  depend  on  his  or  her 
knowledge of the common social rules and language conventions. A sign’s meaning may vary 
among different interpreters. A person lacking sufficient knowledge or a computer program 
without the appropriate rules to handle input, are both unable to interpret messages as they 
were intended to be interpreted. Also, symbols are not necessarily linguistic signs. A logo 
such as the Red Cross refers to an organization by means of convention. Only those who 
know about this convention will be able to decode the message, others will merely notice the 
depiction  of  a  red  colored  cross:  the  meaning  of  a  sign  is  in  the  eye  of  the  beholder. 
Therefore,  any  theory  that  intends  to  properly  define  symbols  must  explain  how  their 
interpretation depends on the capabilities of the interpreter.
 
To understand Peirce’s view on interpretation, let’s consider the elements that play a role in 
the interpretation process. For example, take a wolf that, while roaming through the forest, 
encounters a rabbit in the bushes. The wolf, in this case, is the interpreter. The rabbit would 
be  what  the  interpretation  is  about,  which  Peirce  calls  the  referent.  Although  the  wolf 
perceives the rabbit by means of its eyes, it is not the rabbit itself that works its way directly 
into the mind of the wolf. Rather, it is the light reflecting of the rabbit into the wolf’s eyes 
that bridges the gap between the two animals. The light acts as a stimulus pattern, or signal, 
between referent and interpreter. 

The signal, after being affected by the referent, causes a specific reaction in the interpreting 
system (Peirce,  1955).  This so-called  interpretant is  the instantiation of the interpretation 
process  for  a  particular  signal  and  referent.  Note  that  there  is  a  difference  between  an 
interpreter and an interpretant. One might compare the interpreter to a pool of water, in which 
a pebble – the signal – is thrown. The interpretant, then, is the specific wave pattern caused 
by the pebble. If we take the analogy even further, we might say that the pattern may reveal 
information about the pebble itself or the person throwing it. If we take a person to be an 
interpreter, then we would call the interpretant a thought. 

With this third element, the Peircean sign is complete. The triadic sign is constituted by the 
inseparable union of all three elements1. It is schematically depicted in Figure 1.

1 In the literature, other terms are occasionally used to denote the three elements. Signal is sometimes 
called  sign, signifier, stimulus pattern or  representamen.  Instead of  referent,  the words  signified  or 
object may be used. The term interpretant is now and then replaced by interpreter.
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Figure 1  The Peircean sign, depicted as a triangle (Ogden & Richards, 1923) 

The features of the three elements together determine the type of sign. Since there are many 
possible features for each element and each combination leads to a different type, it would be 
pointless to mention them all2. As we are mainly concerned with semiosis for the purpose of 
understanding the processes that take part in the interpretation of symbols, we will focus on 
the most important distinction: how the signal refers to a referent through a particular kind of 
interpretant. 

Three Kinds of Signs

Before Peirce, other philosophers such as Kant and Hegel had already established that there 
were three possible ways in which concepts could be associated with each other. Concepts 
could either be similar to each other, be correlated, or be bound by a certain convention. It is 
likely that Peirce was influenced by this idea, as he used the same three sign types in his own 
categorization of signs: a signal is associated with a referent by the interpreter in one of three 
possible ways, which he named icon, index and symbol. These denotations have been used by 
others in various contexts, which is often a cause for confusion. However, in this thesis we 
will constrain their use to the Peircean definitions, described below.
 
The first type of sign, called icon, refers to an object by means of resemblance. Whenever the 
interpretant associates a signal with a referent based on their alikeness, the sign is an icon. A 
portrait, a small picture of a printer on a computer desktop, the gestures of a pantomime, a 
no-smoking sign displaying a cigarette covered by a red cross, an x-ray diagram, a police 
officer holding up his hand as a stop sign: they are all  icons, because the signals share a 
similarity with the things they refer to. However, note that two things are not icons of each 
other just because they are similar: similarity, too, is in the eye of the beholder. So, whether 

2 Peirce initially contrived 10 different types of signs, but as he later found more possible dimensions 
their number grew to a formidable 59049 types.
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two things are iconic is not an objective standard, but depends on the interpreter. In fact, if the 
interpreter’s standards of resemblance are low enough, anything may be considered an icon 
of anything else. 

Peirce uses the term index for his second type of sign. In the case of an indexical sign a signal 
is associated with a referent, not because they share similar features, but because the two are 
somehow correlated. The interpreter has previously noticed a connection between the two; 
now,  when one  of  them appears  it  is  reminded of  the  other.  The  interpretant  forms  the 
connection between the two, correlating two objects or events either in space or time.  In 
either  case,  there  might  be  a  causal  connection  between  the  two  or  they  might  have  a 
common origin. For instance, a thermometer is causally connected with temperature because 
it will always reach a higher marker when the temperature rises. An interpreting system that 
has noticed this correlation will use the thermometer mark as an index for the temperature. 
The signal of the height of quicksilver in the cylinder causes an interpretant that refers to the 
sensation of a particular temperature. Other examples of indices include windsocks, medical 
symptoms, footprints, smoke or the sound of a doorbell. 

The third and final type of sign is perhaps the most complex: a  symbol. Tracing the word 
symbol back  to  its  etymological  roots3,  Peirce  translates  it  to  “a  thing  thrown together” 
(Peirce,  1894).  The Greeks used this  word as a figure  of  speech to signify a  contract or 
convention, or in more general terms a signal that is agreed upon. The essence of symbols is 
that they have been established by social convention. Unlike an icon, the connection between 
signal and referent is not based on resemblance. Unlike an index, a correlation between the 
two  is  not  required.  Rather,  they are  connected  by the  interpreter  itself,  in  a  seemingly 
arbitrary way. Any signal may cause an interpretant that refers to any referent, without the 
necessity of a natural link – either similarity or causality - between the two. Words are typical 
examples  of  symbols.  There  is  nothing about  the six  letters  of  the  word  rocket that  hint 
towards its meaning. The number of occurrences of the word together with an actual rocket is 
usually not high enough for them to be correlated. There may be a link between signal and 
referent  in  the  brain,  but  there  is  none  between  the  two  in  the  world.  Instead,  both 
communicating parties have an agreement on what a word means, and the interpreter assumes 
this agreement still holds when the signal is interpreted. 

Because a symbol’s reference is determined by convention, meaning is not intrinsic to the 
physical appearance of the signal. Typical examples of symbols are: a wedding ring, a red 
cross, a number or a flag. Another way of thinking about symbols would be to view them as 
metaphors. In a sentence like 

“A tree stands to a squirrel like a house stands to a person”

there is a metaphorical connection between trees and a houses. Trees, squirrels, houses and 
humans do not share any striking similarities, nor is a tree usually associated with a house 

3 The  Greek  word  σύμβολον  (symbol)  is  composed  of  the  words  σύμ  (sym)  which  translates  to 
“together” and βολή (bole) meaning “throw”.
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based on some remarkably rare  correlation.  Using a  word to stand for  something else  is 
typically based on convention, making the usage of the word “tree” as though it is a house 
something other than a mere pointing relation. 

When considering the examples given, one might wrongfully conclude that all of these are 
necessarily icons, indices or symbols because of some kind of intrinsic property. However, 
they are only signs of a particular kind insofar as they are interpreted to be so. Signals are not 
intrinsically icons, indices or symbols, because the type of sign depends on the interpreter’s 
capability to produce the required interpretants. As in the example of a red cross, it depends 
on the interpreter whether something is an icon or a symbol. In fact,  signs are often both 
icons and symbols4 at  the  same time, such as  the  word  hiccup:  it  is  an icon because its 
pronunciation sounds like its referent, but it is also a symbol since its meaning is determined 
by convention. The same goes for a non-smoking sign. Someone who claims to be unaware 
of the specific convention of this sign may still be held responsible for smoking, as the sign is 
clear by itself.
 
What makes all these examples typical for their respective types of signs is not some kind of 
intrinsic property, but rather that they seem fit for a particular purpose (Deacon, 1997). Many 
of them were designed to relate to a referent in a certain way. A portrait should look as much 
as possible like the person it depicts. Pictograms are designed to be understandable for people 
that are unaware of the ruling conventions, for example on locations with many tourists such 
as airports or train terminals. The purpose of a windsock is to signify the direction of the 
wind, while a doorbell is designed to announce that there is a person standing in front of the 
door. Wedding rings are a relatively simple sign for a whole array of virtues that are generally 
associated with marriage, such as bonding, eternity and equality. By convention, a rectangle 
containing several colored stripes and dots signifies a country, its inhabitants, its customs and 
many other traits. 

Notice  how signs  that  were  designed  to  be  interpreted  as  icons  consistently  differ  from 
symbols. Usually, symbols are relatively simple objects that have a very complex referent. 
Icons on the other hand have to be much more complex objects, since they have to be similar 
to their referent. This causes many constraints on the design of icons, while symbols can be 
selected more freely. Therefore, the production of icons, such as drawing a portrait, can be 
quite difficult. The design of new symbols is relatively easy: all one has to do is to decide for 
a signal to represent a referent. For their respective interpretation the reverse is true. Since 
icons resemble the thing they refer to, it takes almost no effort to understand them. A perfect 
icon would look just like its referent; consequently linking the two together is a trivial matter. 
Symbols  are  much  harder  to  understand,  as  they  require  the  interpreting  system  to  be 
configured in such a way that a particular signal causes a particular interpretant, which refers 
to a particular referent. If the interpreter is unaware of this convention, the intended symbolic 
interpretation will fail.

4 The general name for this class of words is onomatopoeia.
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This is not the first time we have seen such a reversed correlation between the production of 
signs  on  the  one  hand,  and  their  interpretation  on  the  other:  we  have  drawn  the  same 
conclusion from the computational  and social  science’s  meanings of  the  concept  symbol. 
Icons collate with computational symbols, since both of them are hard to design and in both 
cases  the  interpretation  is  relatively effortless.  They are  interpreted  on  the  basis  of  their 
physical similarity with their referent, the premises of a rule. The Peircean definition of a 
symbol is more like the social science perspective on symbols: a sign that is easily produced, 
but  takes  a  considerably  sophisticated  system  to  interpret  correctly.  It  requires  a  deep 
understanding of the network of relations into which the symbol is embedded. With this in 
mind, we can finally distinguish the two modes of understanding in the Chinese Room. By 
following the rules in the dictionary we are doing an iconic interpretation of the Chinese 
characters on the note, only paying attention to their form and the similarity with the premises 
of the rules. A Chinaman would actually interpret the characters symbolically, relating them 
to their intended referents. 

The purpose of  this  shift  towards  the semiotic theory is  not  just  to make the  distinction 
between the two forms of interpretation more clear, or to label the distinction made with the 
Chinese Room argument.  More importantly,  the shift  serves a practical purpose. Previous 
definitions of symbolic interpretation were based on external observations, such as the Turing 
Test, or arguments lacking scientifically unambiguous terms like Searle’s different modes of 
understanding. Contrarily, the definitions of icon and symbol are embedded in a larger theory 
of interpretation. Instead of limiting ourselves to a discussion of the observable features of 
interpretation, we can now focus our attention to the processes that play a role  inside the 
interpreter. 
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Chapter 3: Hierarchy of Signs

Constructing a Ladder

In his book  Mind and Nature (Bateson, 1979) the British anthropologist Gregory Bateson 
introduces his epistemology by exploring the relation between interpretive processes and the 
patterns which exist in nature. One of the book’s central themes is what he calls the pattern  
that connects. Right at the beginning of the book, he presents the reader with an analysis of 
the similarities  and relations between the physical  structures  of  organisms to explain this 
central concept:

The parts of a crab are connected by various patterns of bilateral symmetry, of  
serial homology, and so on. Let us call these patterns within the individual growing  
crab  first-order connections. But now we look at crab and lobster and we again  
find  connection  by  pattern.  Call  it  second-order  connection,  or  phylogenetic  
homology. Now we look at man or horse and find that, here again, we can see  
symmetries and serial homologies. When we look at the two together, we find the  
same cross-species sharing of pattern with a difference (phylogenetic homology).  
And, of course, we also find the same discarding of magnitudes in favor of shapes,  
patterns, and relations. In other words, as this distribution of formal resemblances  
is spelled out, it turns out that gross anatomy exhibits three levels or logical types  
of descriptive propositions:

1. The parts of any member of Creatura are to be compared with
other parts of the same individual to give first-order connections.

2. Crabs are to be compared with lobsters or men with horses to
find  similar  relations  between  parts  (i.e.,  to  give  second-order  
connections).

3. The comparison between crabs and lobsters is to be compared
with the comparison between man and horse to provide third-order  
connections.

 (Bateson, 1979, p.10) 

Thus, Bateson recognizes three different types of relations between objects. His first-order 
connection depends on a comparison of parts, a judgment based on similarity. His second-
order connection requires a comparison between relations of parts of animals. And in the case 
of  Bateson’s third-order  connection,  the comparison of two animals  itself is  compared to 
another comparison. In this chapter, we will find that Peirce’s sign trichotomy is not that 
different from Bateson’s account of ordered patterns (Hui, Cashman & Deacon, 2006).
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In the previous section we have demonstrated how signals are related to referents by means 
of  three different types of  interpretants.  The primary goal  of this  section is  to show how 
icons,  indices  and  symbols  are  related  to  each  other.  These  sign  types  are  not  equally 
interchangeable: as they increase in complexity from icon to symbol, they progressively rely 
on the more simple forms of interpretation. This hierarchy is also evident in Bateson’s levels 
of descriptive propositions. Just as first-order connections serve as a foundation for second-
order connections, and second-order connections build up to third-order connections, so do 
symbols depend on indices, and indices on icons. This will prove to be a crucial point in the 
design  of  the  symbolic  interpreter’s  blueprint.  We  should  therefore  take  some  time  to 
understand  the  processes  that  underlie  the  formation  of  interpretants,  and  how they  are 
related.  In  the  remainder  of  this  chapter,  two  examples  showing  different  interpretation 
processes will be presented and analyzed following a general scheme that was previously set 
out by Deacon in his book The Symbolic Species (Deacon, 1997). 

Imagine a museum where a 17th-century painting is on display, depicting a royal meal in the 
dining hall of a castle. The king and queen are located in the center of the canvas, and the 
queen is holding a dog on her lap. A child, visiting the museum with its father, notices the 
animal and remarks it looks just like a dog. Quite clearly, this is an iconic observation. When 
the father  sees  the  dog he wonders where  its  doghouse  might  be,  based on his  previous 
experiences with dogs and doghouses being together. Using the correlation between dogs and 
doghouses is an indexical interpretation. The director of the museum walks by and explains 
what the painter’s original intentions were: back in the time when the painter lived, painting a 
dog on someone’s lap was a symbol for adultery. By painting one near the royal couple, the 
painter intended to mock them. This symbolic kind of interpretation is most likely to be done 
by an expert. It requires a deep understanding of the conventions that were common in the 
17th century.5

Another example:  say a history professor is holding an umbrella upright  in front of  him, 
while walking through a University hallway with a colleague. A student outside the building 
takes a peek through a window and recognizes the professor, but he can’t quite distinguish the 
umbrella. He thinks it is a walking stick. As his judgment is based on the physical similarity 
between  an  umbrella  and  a  walking  stick,  it  is  an  iconic  interpretation.  Another  student 
passing the professor in the hallway does recognize the umbrella and without taking a peek 
outside,  he  immediately  concludes  that  it  must  be  raining  outside.  This  is  an  indexical 
interpretation, because he knows that umbrellas are often seen when it is raining. Note that he 
must recognize the umbrella previous to being reminded of the correlation. The indexical 
interpretant depends on an iconic classification. 

All the while, the professor is telling a story to his colleague during their stroll. He tells how 
gladiators would fight in ancient Roman arenas and illustrates his story with gestures, using 
his umbrella for a sword. The colleague interprets the umbrella symbolically, as it stands for a 
sword. This differs from an iconic interpretation. He doesn’t think the umbrella is a sword: he 

5 For a more thorough account of sign interpretation in the visual arts, cf. (Panofsky, 1972)
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can easily see it  isn’t.  Also, he is not just reminded of a correlation between swords and 
umbrellas, because those are usually not seen together. Rather, he interprets the umbrella as 
though it is a sword. How did the history professor arrange this convention? The physical 
features of an umbrella alone are not sufficient to remind his colleague of a sword. He would 
never guess what it is supposed to stand for without the conventions set up by the professor 
telling his story.  These conventions  are  created by highlighting the relations that  the two 
objects have in common, or by inventing new ones. For instance, by swinging the umbrella 
like a sword the professor intends to show a correlation that both objects have in common. Or 
by holding it upright in front of his chest, he shows another resemblance. It is important to 
note that this is not the usual kind of physical resemblance: it is a likeness between relations  
of two objects. The story creates a similarity in the topologies of both networks of relations, a 
similarity that may be recognized by a symbolic interpreter.

Both examples  show how each type  of  interpretation requires  an increasing competence. 
They may also unveil how each type of interpretation depends upon the others: each type 
relies  on the capability of interpreting a more simple type. Iconic interpretation skills are 
required for an indexical interpreter; a symbolic interpreter needs to have indexical skills. In 
order  to  discover  the  kind of  interpretant  that  are  responsible  for  this  hierarchy,  we will 
reconstruct the two examples from an interpreter perspective, starting with the formation of 
sub-symbolic – iconic and indexical – interpretants.

Sub-symbolic Interpretation

For the student who is staring at the umbrella from far away, thinking it is a walking stick, it 
makes no difference whether the professor is actually holding a walking stick or an umbrella: 
he will believe it is a walking stick anyway. The child, not having seen too many dogs in its 
life, would not have noticed the difference between two different dog breeds, and still classify 
the creature as a dog. For someone who is blind, all paintings are icons of each other. In each 
of these examples the interpreter typically fails to make a distinction. Again, although things 
that have similar physical features will often tend to be regarded as iconic of one another, it is 
the particular interpretant caused by these features that determines the sign type. It is likely 
that some differences will be disregarded when the signal causes an interpretant. Therefore, 
iconic interpretation basically comes down to a process of classification. 

Iconic  interpretation  is  the  necessary starting  point  of  every interpretation  process  –  see 
Figure 2. In the first example, both the father and the expert have to recognize the dog, before 
they can make an indexical or symbolic interpretation, respectively. The same goes for the 
example with the professor´s students and colleague, who have to recognize the umbrella 
before discovering any indexical link or symbolic meaning. 

25



Figure 2  The iconic sign

Like icons, indices only exist by virtue of the interpreter noticing a correlation in space or 
time. There are no objective conditions to the proximity of two things, or the time interval in 
which they occur that makes them indexical. Only the standards of the interpreter determine 
whether they are an index, although close proximity or simultaneous appearance do make an 
indexical  interpretation more likely.  An index supposes a correlation between two things, 
based on previous experiences of those things occurring together. In the first example, when 
the father of the child recognizes a dog on the painting he is reminded of the correlation 
between dogs and doghouses,  two concepts which can often be seen together.  The iconic 
interpretation of the dog is primary: the visual stimulus causes an interpretant, classifying it 
as  a  dog.  But  now,  the  interpretation  process  continues  and  the  first  interpretant  causes 
another interpretant by virtue of the previously noticed correlation. In this case, the second 
interpretant refers to a doghouse. It is the same iconic interpretant that would be caused by 
the visual stimulus of a doghouse, but now it is caused by another interpretant. The image of 
a dog brings the thought of a doghouse to the father’s mind. The same goes for the student 
passing the professor. He sees an umbrella, which makes him think about rain.

In  the  examples  we have seen how icons  bring about  other  interpretants,  by virtue  of  a 
correlation between the two. However, the classification of the visual stimulus is not the only 
icon taking part in this process. The father has seen doghouses before and noticed they all 
shared a  similarity too.  Now,  this  iconic  interpretant  is  caused  again,  albeit  this  time by 
another interpretant. The third part of the index is formed by a correlation between dogs and 
doghouses. Since this particular pairing bears a resemblance with previous pairings between 
dogs and doghouses, it is a higher-order icon. The index only works because the interpreter 
has repeatedly recognized that these two icons appear together, both now and previously. In 
many situations there has been a correlation between a dog and a doghouse. This particular 
correlation is iconic to these. Thus, three similarities ultimately play a role in the indexical 
interpretation  process:  a  similarity between the  dog and previous  occurrences  of  dogs;  a 
similarity between the doghouse and previous occurrences of doghouses; and a higher-order 
similarity between the co-occurrences of dogs and doghouses. An index depends on icons 
while icons themselves do not require indices; therefore they are hierarchically related, as 
depicted in Figure 3.
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Figure 3  An index, composed of three icons

Symbolic Interpretation

It should be no surprise that we find symbols at the top of the sign hierarchy. Explaining 
symbolic  interpretation  requires  a  slightly  more  thorough  investigation  of  the  processes 
involved than that was required for our analysis of iconic and indexical interpretation. We 
have already seen that  a  symbol is  a  complex kind of sign.  Its  physical  features  are not 
necessarily  intricate  but  its  interpretation  usually  is,  as  it  requires  knowledge  of  the 
conventions  surrounding  it.  The  museum  director  is  the  only  person  who  has  enough 
expertise with these paintings to be aware of the convention that dogs used to be associated 
with adultery. There is no natural correlation between the two, neither in time nor in space, 
and so it  is  not  immediately clear  why they should be  associated with  each other.  Their 
relation appears to be arbitrary; the convention of the metaphoric use of a dog’s depiction has 
simply been passed on over time. Someone, at  some point,  found a reason why the two 
should be connected and shared this rule with others. Narrowing down our analysis, we find 
three important questions that beg for an answer. In what way are conventions communicated 
generally? What reason could someone have to link two things together that are not directly 
related by similarity or association in the first place? And what kind of interpretant plays a 
role in the construction of such a convention?

In the example of the professor using his umbrella as a sword, he himself already knows what 
the umbrella stands for. In order for his colleague to understand the metaphor, he intends to 
highlight the parallel between the two different settings in which umbrellas and swords are 
used by holding the umbrella in specific  positions, swinging it  around and using specific 
gestures  and  facial  expressions.  Both  objects  are  embedded  in  a  network  of  indexical 
relations, of which the professor’s activities are also a part. A sword can remind someone of a 
swinging object in general, or an object that is held upright in front of the chest. By showing 
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these particular motions, the professor adds indexical relations to an umbrella that match with 
some of the indices a sword has, thereby aligning their indexical networks. At some point, the 
colleague may notice the similarity between the two networks and remark that this umbrella 
is just like a sword, because they have so many similar indexical relations. The discovery of 
this metaphor is exactly what the professor is aiming for. The goal of his actions is to align 
the networks to increase the probability of the students being reminded of a sword, even 
though they can see it is an umbrella.

But  how does  the  professor  himself  link  these  objects?  After  all,  he  is  not  induced  by 
someone else to see the similarity of the indexical relations, but has to notice it on his own. 
Without another person swinging around an umbrella standing next to him, the network of 
indices in which an umbrella is embedded will probably be very different from the network of 
a sword. However, in our discussion of the iconic interpretation process we have seen that 
whether two things are alike is not an objective measure, but follows from the standards of 
the interpreter. When distinctions are ignored, objects with very different physical features 
can still be regarded to be the same. And just as anything can be iconic of anything else, so 
can the topology of any network of relations be iconic to any other network’s topology. If two 
things share many similar indices, they are more likely to be regarded as symbolic of each 
other, but two things that have entirely different relations may still be considered symbolic of 
each other. 

In more general terms then, a symbol requires a  system iconicity between the topologies of 
the networks of indices in which the symbol and its referent are embedded. A higher-order  
indexical relation between two objects or events is formed, based on the likeness of their 
respective indexical relations. Whereas an index links two things together that co-occur, a 
symbolic sign points to something by virtue of their common locus in comparable network 
topologies. As the example of the umbrella and the sword demonstrated, the resulting relation 
is not just a correlation but a higher-order index based on other indices. In this relation, a 
symbol  token  stands  for  an  action  or  object,  provided  that  their  indexical  relations  are 
properly aligned for the interpreter to notice the system iconicity.
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Figure 4  The Peircean symbol, hierarchically composed of three indices

The diagram shown in Figure 4 may be misleading in its simplicity. One might conclude from 
it  that a  fourth type of sign could easily be contrived by adding another set  of triangles. 
However, if we consider in what ways an interpretant can connect a signal to a referent, it 
becomes clear that there are only three types. The most basic unit is the icon, followed by the 
index. The third type is formed by a similarity between the indexical network topologies of 
signal and referent. If we suppose there are more than three types possible, the connection 
between signal and referent for this fourth type of sign would be based on a higher-order 
index  among  higher-order  indices  among  the  indexical  network  topologies,  yielding  yet 
another symbol. 

We have seen in this chapter how interpretations can occur in various ways, depending on the 
properties of the interpreting system. It turns out that both iconic and indexical qualities form 
a necessary component of  a symbolic interpreter.  The hierarchical  relations binding these 
three levels are a crucial part of the theory set out in this thesis. However, at this point our 
model is still quite formal, lacking any evident applications. In working towards a falsifiable 
model  of our theoretical  system, we will  investigate  the possibilities  for a more concrete 
implementation of these ideas in the next chapter. 
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Chapter 4: Symbols and Networks 

Neural Networks

Leaving the hierarchical ordering of signs aside for a moment, let us focus on the vehicle of 
interpretation and specify what characteristics define an interpreter. Peirce himself adheres to 
a rather broad definition: any system could principally be regarded as an interpreter, provided 
that its properties satisfy the necessary conditions for interpretation (Hookway, 1985). That is, 
such  a  system should  be  capable  of  producing  an  interpretant  that  makes  a  connection 
between the signal and the referent of the sign, either by similarity, correlation or convention. 
To determine  what  kind of  interpreter  a  system is,  it  needs  to  be  analyzed  based  on its 
potential to produce interpretants of a certain type. So whether living or non-living, a human 
brain, wolf brain or rabbit brain, computer, glass of water, or artificial neural network: any 
system could principally be regarded as an interpreter. But although these are all potential 
interpreting systems and therefore potential vehicles for our theoretical model, they are not all 
equally  interesting  in  the  light  of  this  research.  Specifically,  they  differ  in  degrees  of 
comprehensibility, biological plausibility and the type of interpretants they can produce.

Considering these factors and the possible systems, artificial neural networks appear to be a 
good candidate. Being a mathematical abstraction of a biological process, they are modeled 
after the electronic pulses propagating neurons in the brain. We know that our human brains 
are capable of symbolic interpretation, which, due to the hierarchical nature of interpretation, 
implicitly implies a capability for indexical and iconic interpretation. Because artificial neural 
networks are based on brain processes, it could be argued that they also meet the necessary 
conditions for producing symbolic interpretants. Although this is only an assumption, their 
biological plausibility gives them a head start when it comes to finding the most appropriate 
model.  Additionally,  neural  networks  are regularly used in artificial  intelligence  research. 
Their  generic  nature  allows  for  an  array  of  different  learning  tasks,  such  as  automatic 
recognition and prediction. They are also widely used in symbol grounding studies (Harnad, 
1990), (Vogt, 2002). 

Neural networks are sometimes criticized for being incomprehensible to human observers. 
Unlike the traditional rule-based systems where the execution of a program can be traced and, 
to some extent, understood, neural networks are generally treated as black boxes. Generally, 
only their input and output values are considered while the firing units in the hidden layers 
are ignored. However, when we consider this apparent weakness from a different perspective, 
it turns into an advantage. The human observer who makes sense of a program’s execution 
runs  the  risk  of  attributing  properties  to  the  computer  that  are  unaccounted  for,  because 
variables and functions are usually named for what they ought to do, but not always for what 
they actually do6. Using a variable called learning in a program might falsely induce someone 
to think it is learning. A neural network, or any other black box model, is less likely to be 

6  This error is also known as the fallacy of wishful mnemonics (McDermott, 1981)
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attributed capabilities unjustly, because its components have no obvious meaning to a human 
observer. This necessitates a careful examination of the network’s interpretation processes to 
determine what is actually going on inside the system, and how or why an interpretant was 
caused. 

Let’s take a closer look at neural networks and how they work, in order to see how they can 
be mapped onto Peirce’s semiotics. A typical neural network is composed of several  nodes, 
sometimes  called  processing  units,  interconnected  by  a  number  of  edges.  Inspired  by 
biological neural networks - where neurons become activated by an electrochemical pulse 
and subsequently fire a pulse to other neurons through synapses – nodes are activated by an 
activation function that operates on its incoming edges. Once activated, the node in its turn 
activates other nodes through its outgoing connections. Figure 5 shows an example of a node 
and a common activation function. 

Figure  5 (a)  A  neural  network  node,  with  an  activation  function  y  over  the  
weighted sum of its input connections. The activation of each input xi is multiplied  
by a weight variable wi for that vector. (b) If  their summation passes a certain  
threshold  θ,  the  node  fires  by  activating  its  outgoing  connections  yj.  In  this  
example, the  step activation function is used to determine the output value of the 
node (McCulloch & Pitts, 1943). 

 
By varying the number of nodes and the configuration of connections, different networks 
with different abilities can be realized, making them popular for tasks involving learning. In 
general  terms,  learning  occurs  by  generating  a  large  amount  of  different  network 
architectures, and holding on to those which cause the closest approximation of the required 
output values. Since the number of possible random architectures will generally exceed the 
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number of models that can be tested in a reasonable amount of time, a heuristic method is 
commonly used to  generate  new architectures.  Two prevailing  methods  for  exploring the 
search space are the Backpropagation algorithm (Rumelhart, 1986) and Genetic Algorithms 
(Holland, 1975).

It can be quite difficult to follow what goes on in these clusters of interconnected processing 
units, especially when the number of nodes grows larger. To keep neural networks somewhat 
comprehensible,  the nodes are  typically7 grouped in three kinds of  layers:  an  input  layer 
where data enters the network; several hidden layers that propagate the activation pulses; and 
an output layer that shows the result of the propagation to a human observer or a learning 
algorithm. Note that difficulties arise whenever one ascribes interpretation qualities to the 
network. For instance, are the output neurons a vital component of the interpretation process, 
or do they just serve as indicators to an external observer? How is the network’s knowledge 
distributed over the system? Are certain neurons responsible for particular tasks, or is every 
neuron involved each time? And how do we distinguish different types of networks based on 
their structure? Although these question fall outside the scope of this thesis, they beg for a 
theoretic  framework  of  interpreting  systems  into  which  neural  network  models  can  be 
embedded. 

Figure 7  Example of a feed-forward neural network. Data enters the network at  
the  input  layer  on the  left.  After  a  series  of  parallel  propagations  through the  
hidden layers, the output nodes are activated. 

7 This claim is true for most feed-forward neural networks, the type of networks used throughout this 
thesis. Other types (e.g. recurrent neural networks) often have differently named layers or a completely 
different architecture altogether. 
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Interpreting Networks

Let’s reconsider the semiotic theory of Peirce, which has been discussed in chapters two and 
three, and see how it applies to neural networks. As the Peircean sign consists of three parts – 
signal,  referent  and interpreter  – we should be able  to distinguish  all  three  in  the  neural 
network  interpretation  process.  We  will  do  so  by  analyzing  an  example  where  a  neural 
network classifies a series of images. We construct a training set containing various visual 
representations of circles and squares,  which a neural network learns to classify into two 
different categories. Each time an image is shown to the network, a sign interpretation takes 
place.

Clearly,  the  images should  be  considered  as  signals  to  the  neural  net,  which itself  is  an 
interpreter. The propagation of pulses through subsequent layers of the network – a particular 
activity pattern caused by the signal – is the  interpretant.  Finally, the nodes in the output 
layer  indicate  whether  the signal  was found to refer  to a circle  or  a square.  Because the 
network does not have direct access to these referents, it attempts to reconstruct them from 
the information available in the signal. The network could also have been taught to separate 
small from large objects,  or blank images from random markings. But in the case of this 
example, the reconstruction process only takes salient properties into account that discern 
circles from squares, as the network has learned to distinguish between these two particular 
shapes. 

Note how the semiotic approach leads to a limited but functional understanding of what goes 
on in these networks. The fallacy of wishful mnemonics is carefully avoided: we should not 
let our own understanding of these concepts get in the way of theorizing about the network’s 
interpretation capabilities. No claims are made about the similarities between our conception 
of circles and those of  a neural  network -  we can safely assume that  the differences are 
plentiful. Instead, it is only claimed that, for this particular network, a circle is defined by its 
properties that make it distinguishable from squares, and vice versa. In other words: to this 
network, every input is either a circle or a square. If the network had been trained differently, 
by for instance rewarding the classification of a third category of triangles8, we would have 
affected the possible set  of referents and thereby the network’s conception of circles and 
squares. 

As  a  next  step  towards  understanding  the  interpretation  process  that  takes  place  in  the 
example above, let’s contemplate on the type of interpretation at hand. Is the classification of 
circles and squares an iconic, indexical or symbolic task? In the case of iconic interpretation, 
the signal is connected to a referent based on a similarity relation. The interpretant caused by 
the  input  signal  generally  leads  to  a  prediction  of  the  referent  based  on  the  typical 
characteristics of the image. In this case, the relation between signal and referent is indeed 

8 Remark that the training set does not necessarily have to include images of triangles. We merely train 
the network to classify some images as triangles based on their similitude to our conception of 
triangles. It is important not to confuse the shapes that correspond to words like circle, square or 
triangle to us, with the neural network’s conception of these categories.
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based on similarity, or rather, the network’s ability to discriminate between various shapes. 
Differences within each of these categories are discarded in favor of properties that allow for 
a separation between circles and squares.

It is generally known that neural networks are well fit for these kinds of classification tasks. 
Their  robustness  allows  them  to  handle  distorted  data,  while  their  generic  architecture 
facilitates  many  different  learning  algorithms,  even  allowing  for  classification  without 
feedback (Kohonen, 1982). Not coincidentally, Harnad uses the term iconic representations 
when he discusses how a neural network is used as a basic building block for connecting 
intelligent systems to the environment (Harnad, 1990). A neural network is indeed a suitable 
model for an iconic interpreter. But how about indexical interpreters? Can we still use neural 
networks as a model for the kind of interpreting system that draws a link between signal and 
referent by means of correlation? 

Fortunately, we can. Another common task for neural networks, apart from classification, is 
prediction.  By showing it  a  number  of  input-output  pairs,  the  network can be trained  to 
predict these correlated pairs by activating the output state when the input data is shown. We 
can compare this to the example in the previous chapter,  where the recognition of a dog 
brings the thought of a doghouse to the mind of the observer, without him seeing an actual 
doghouse. When the input data is shown to the network, it causes an activation pattern as 
though the correlated data had been shown directly. And, like in the example, this indexical 
relation consists of three icons: the activation pattern caused by the input data, the pattern that 
would  have  been  caused  by the  output  data,  and  finally  the  higher-order  pattern  of  the 
network that causes the first to turn into the former. All three of these responses have to be 
learned correctly by the network in order to properly execute an indexical interpretation. 

Consider the task of diagnosing a patient based on medical symptoms. A neural network has 
learned  to  predict  the  patient’s  ailment  knowing  only these  indicative  symptoms.  It  has 
repeatedly been shown a training example, after which it received feedback on the correlated 
disorder. In this example of indexical sign interpretation, the signal is the set of symptoms. As 
Peirce suggests, an interpretant can be a signal for yet another sign; we see here that the 
symptoms,  being  themselves  iconic  interpretants,  are  a  signal  to  another,  indexical 
interpretation process. The specific disorder is the referent of the sign, while the network’s 
habit of going from one icon to a correlated icon – a higher-order activity pattern - is the 
interpretant of this indexical interpretation. In doing so, the interpretant relates the signal to 
the referent because it has previously observed their correlated presence. 

One way of modeling an indexical interpreter can be achieved by using so called recurrent  
neural networks (Elman, 1990). These systems have the property that some layers are bi-
directionally connected, creating loops in the network’s architecture and thereby adding a 
time dimension to its activity. Elman shows how this network can learn to associate words 
that appear next to each other in a set of common sentences. These words are presented one at 
a  time,  leaving  the  network  to  discover  a  correlation  in  time  between  them.  They  are 
primarily interpreted as icons, but at the same time they also give an indication of which 
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word will be next. For instance, one might expect the word Hong to be followed by Kong if 
one is familiar with the name of the territory but not with the Chinese language. In the same 
way, when the recurrent network recognizes the word  Hong,  it has the habit of causing a 
certain activity pattern that would normally be active when the word  Kong is recognized. 
Because  of  this  higher-order  tendency that  it  has  acquired  during the  learning stage,  the 
system is able to predict what the next word will be. 

As the loops in recurrent neural networks add a lot to their complexity, these systems have 
proved to be quite  difficult  to use,  let  alone to understand their  workings in the light  of 
Peircean  semiotics.  There  are,  however,  models  of  lesser  complexity  that  still  meet  the 
preconditions  for  indexical  interpretation.  The  same  neural  network  that  we  used  for 
classifying circles and squares can also serve as a model for diagnosing symptoms. If we take 
the symptoms to be the signal for the input layer, and the diagnosis as the referent in the 
output layer, the network can be trained to produce interpretants that connect symptoms with 
their corresponding disorders. The network thus learns to make an indexical mapping from 
one icon to another. Both icons consist of rather trivial classifications from an input signal to 
an identical referent in a network consisting of one node. But keeping the icons that simple 
consequently allows for the indexical interpretation to be quite straightforward. Despite the 
superficiality of the classification process, this model is still preferable over other models like 
recurrent networks due to its simplicity. And although several other issues can be raised about 
the self-organizational abilities and the biological plausibility of this system9, it serves as an 
adequate  model  for  indexical  interpretation  considering  our  purpose  of  discovering  the 
architecture of a symbolic interpreter. 

Emerging Symbols

The final question that we need to answer is how this indexical neural network leads to a 
model of symbolic interpretation. After all, the semiotic hierarchy that was covered in chapter 
three implies that symbols can be constructed from indices just as indices are constructed 
from icons. One possible approach would be to apply the same trick that was also discussed 
in the previous section; only this time, we claim that both the iconic and the indexical step – 
recognition and subsequent association of the input data - consist of a trivial transition within 
one node,  resulting  in a network that  makes a ‘semantic’ mapping between patterns.  For 
instance, we could construct a simple neural network that connects a pattern that we have 
named umbrella with another pattern we call sword, and claim that the network understands 
that umbrellas can be used as metaphors for swords. 

However, just because  we sometimes use an umbrella as a symbol for a sword, it doesn’t 
automatically follow that every device connecting these two concepts is also symbolic. If we 
take the same network and patterns, but now call the patterns dog and doghouse, the network 
doesn’t suddenly become an indexical interpreter. Our own interpretations should not stand in 

9 What these issues are and how they affect the scope of this theory will be discussed in the final 
chapter.
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the way of trying to make an objective assessment of the network’s capabilities. This line of 
argument bears a resemblance to Searle’s critique on rule-based systems. He intends to show 
that a mapping that would normally require a symbolic interpreter – answering a question in 
Chinese  –  can  also  be  done  with  an  indexical  system –  a  simple,  rule-based  dictionary 
(Deacon,  1997).  In  the  same  sense:  a  mapping  of  umbrella to  sword,  or  a  word  to  a 
corresponding concept, is not always a symbolic operation. Peirce shows that semantics, the 
symbolic connection between signal and referent can only be achieved using an interpreter 
with symbolic qualities. Therefore, we will approach the question by considering how such a 
symbolic interpreter can be constructed from indexical systems, using the Peircean hierarchy. 

Recall the three binding factors of signs: similarity, association and convention. The latter is 
no doubt the most difficult type of sign, often leading to ambiguous definitions. How do we 
represent convention in a neural network? Classification by similarity takes care of icons, and 
we have shown that both recurrent and simple, feed-forward neural networks can be used for 
modeling  indexical  interpreters.  As  the  previous  arguments  show,  another  feed-forward 
network  can  theoretically  be  used  to  model  symbolic  interpretation  by  constructing  a 
mapping between concepts we would consider as metaphors.  However, such a superficial 
model  does not  lead to any interesting insights  into the nature  of  metaphors,  nor does it 
demonstrate what qualities a symbolic system should possess. We should delve deeper into 
the  workings  of  symbolic  interpretation  in  order  to  come  up  with  a  more  realistic  and 
informative model. 

Recall the example of the professor swinging and stabbing with his umbrella to remind his 
colleague of a sword. It has been argued that this intentionally induced symbolic connection 
consists of three parts:

 
(1) The indexical network of relations in which umbrellas are embedded;

(2) The indexical network of relations in which swords are embedded; and 

(3) A higher-order link between these two networks. 

Both (1)  and (2)  are presumed to be available  to the colleague,  but initially they are not 
similar enough for (3) to be noticed. By adding indexical links like swinging and stabbing, 
the professor intends to expand (1) in order to make it more similar to (2). His goal is to make 
the colleague notice that (1) and (2) are iconic of each other. Once the similarity is noticed 
and their relation understood (3) allows the interpreter to pick a token of one system - an 
umbrella - and use it  as a symbol for one of the other system’s tokens – a sword in our 
example. 
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Keeping  this  example  in  mind,  how  would  we  model  such  a  hierarchical  ordering  of 
interpretation? We have already seen how a simple feed-forward neural network can be used 
for  indexical  interpretation.  This means  that  (1)  and (2)  should each be represented by a 
neural network, in which the concept’s relations are represented by an associative mapping. 
Using  a  truth-table  containing  the  correct  input  and  output  patterns,  the  network  can  be 
trained to associate one icon with another. This leaves one final question to be answered: how 
can (3), the higher-order connection between these networks, be established?  

To understand the metaphoric use of an umbrella for a sword, a similarity beyond the pure 
physicality of the objects is required; instead of a comparison of the qualitative aspects of 
these objects, the professor´s co-worker now has to compare the indexical relations. Notice 
how this juxtaposition is  itself an iconic interpretation, this time using the interpretants of 
both networks as a signal for a higher-order interpretation. Therefore, in order to find the 
similarity, any iconic interpreter may be used – including a neural network!

Once this similarity has been found, the symbolic system uses the redundancies among both 
indexical  networks  in  order  to  learn  more  efficiently.  Not  only is  the  higher-order  layer 
responsible for finding a  metapattern - a pattern of patterns - among these two domains, it 
should  also  relate  them  by  establishing  a  higher-order  index,  as  the  symbolic  link  is 
constituted of a pointing relation between two indexical interpretants. The metalayer needs to 
interpret the interpretants, recognize the similarities in their correspondence relationships and 
relate concepts in similar positions. And, since neural networks are also capable of indexical 
interpretation, we can use them to model not only the iconic process of this metalayer, but 
also  the  higher-order  index.  This  leaves  a  hierarchical  ordering  of  three  indexical  neural 
networks to model a symbolic interpreter:  two networks representing both domains and a 
third to observe and relate the other two. 

This also explains why we have consistently called the latter a higher-order network: because 
its signal is formed by the interpretant of yet another network. By gaining  insight into the 
processes of the other two networks, this third network is able to draw a higher-order link 
between the two, allowing the system to associate two concepts metaphorically – that is, not 
by correlation but by convention. We conclude this chapter by quoting, again, Bateson on the 
hierarchy of interpretation:

We have constructed a ladder […] The pattern which connects is a metapattern. It  
is a pattern of patterns. It is that metapattern which defines the vast generalization  
that, indeed, it is patterns which connect.

(Bateson, 1979, p.10) 
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Chapter 5: Symbolization, Language and Neural Nets

The Chimpanzee Experiment

To evaluate the merits of the model presented in the previous chapter, the difference between 
indexical  and  symbolic  interpretation  should  be  made  more  concrete  and  used  in  an 
experimental environment. However, finding such an environment poses a serious challenge. 
We have discussed in earlier chapters how difficult it can be to compare artificial models of 
representation with natural models. Recall that one of the strengths of the Turing Test is that it 
skips this problem entirely and focuses exclusively on the externally observable difference 
between  human  and  computational  inference.  But  as  the  Chinese  Room  Argument 
demonstrates, we can’t just conclude that a program’s computation is symbolic merely from 
the correctness of its output sentences. For such a conclusion to be drawn, we need a proper 
understanding of how the output comes about. Perhaps the most convenient solution – albeit 
an impossible one -  would be to look directly inside a computer,  study every piece  of  a 
computational  interpretation  process  and  compare  these  to  human  brain  processes. 
Unfortunately, the incompatibility of these system’s architectures in size, structure, and many 
more dimensions, forces us to take a less direct approach.

Despite  the  limitation  of  only  having  indirect  access  to  the  object  of  our  study,  the 
interpretation  process,  much  information  can  still  be  gathered  from experimental  data  – 
indeed,  more  than  Searle’s  argument  implicitly  suggests.  It  may not  be  valid  to  ascribe 
symbolic qualities to a system that merely produces a correct sentence; but we will see that 
by comparing learning strategies and experimenting with different kinds of learning tasks, 
such sentences provide a world of knowledge, given an adequate theoretical foundation. 

To demonstrate how analyzing output sentences can lead to conclusions about the semiotic 
properties of a system, we turn to a series of language training tasks for chimpanzees. In the 
1970’s,  Sue and Dwight Savage-Rumbaugh devised and conducted several experiments to 
test  the  linguistic  capabilities  of  these  apes;  an  overview  of  their  work  is  presented  in 
Symbolization, Language and Chimpanzees  (Savage-Rumbaugh, 1978) in which they relate 
the experimental results to the Peircean framework. They were able to show how different 
language  acquisition  strategies  explain  the  varying  learning  curves  between  apes,  using 
Peirce’s distinction between icons, indices and symbols to interpret their data. 

Previous to that article, other language training studies had already claimed that apes could 
learn a vocabulary of over a thousand words. As apes are not able to express themselves 
clearly enough by vocal communication, a panel containing small pictures called lexigrams, 
shown in Figure 8, is typically used in these kinds of experiments. An ape has to press or 
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point to one of the lexigrams with its finger, thereby indicating the intended use of that word 
and demonstrating its  language capability.  For example,  in order  to receive a banana,  he 
might point to the lexigram associated with banana, and – depending on the complexity of 
the learning task at hand – subsequently point to the give lexigram. 

Figure 8  A typical set of lexigrams. Some of these are composed of basic elements  
such as lines and circles; others depict images that we would find iconic of objects  
or people. The particular lexigrams depicted in this image are a part of the Yerkish 
language, a set of tokens specifically designed for ape communication.  

Using the training methods such as the one described above, apes can be induced to learn 
large vocabularies. But as the number of studies grew and the gathering of experimental data 
continued, some researchers started to doubt the validity of the claim that these apes were 
using language. Surely, the sentences were produced without error. And given the limited set 
of  words  and  sentences,  their  behavior  could  certainly  not  be  discerned  from  humans 
performing  the  same  task.  However,  it  was  disputed  whether  the  sentences  were  really 
symbolic, or just the result of a stimulus-response correlation that was learned by the apes. 
The lexigrams they pointed to might not mean anything to them; the pointing could simply be 
an action learned to obtain a reward. 

Critics  of  these  simple  naming experiments,  among  them the  authors  of  Symbolization,  
Language and Chimpanzees, generally argue that the implicit assumption of the lexigrams 
meaning something to the apes – a prerequisite for symbolic interpretation - is not something 
to  be  overlooked.  To make  the  discussion  more  insightful,  they present  a  series  of  four 
experiments demonstrating how apes may gradually learn the meaning of lexigrams. Initially, 
the chimpanzees fail to learn anything at all, but after a slight change in setup they manage to 
produce correct sentences for obtaining a food item or beverage. However, a third experiment 
shows  how  these  sentences  are  merely  stimulus-action  pairs,  not  symbols.  In  the  final 
experiment they alter the setting once again in order to induce some of the apes to abandon 
their straightforward approach and adopt a symbolic learning strategy instead.
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Despite  the  obvious  differences,  the  discussion  about  ape  language  has  many  issues  in 
common  with  a  computer’s  capability  of  understanding  language.  The  Chinese  Room 
argument  shows  how producing  a  sentence  is  not  necessarily  the  same  as  expressing  a 
thought;  if  this  holds  for  humans  and,  arguably,  for  computers,  then  why  not  for 
chimpanzees?  If  the  underlying  principles  are  the  same,  then  we  could  expect  that  the 
learning curves of humans, apes and computer programs are at least somewhat alike. Let us 
therefore take a closer look at the experiments and results of the chimp language training 
task, and compare them with a series of experiments conducted with the model presented in 
chapter four. 

Naming Objects

In the first of the four experiments, the chimps are merely required to name shown objects by 
pressing  the  correct  lexigram token.  Contrary  to  the  researchers’ expectation  –  in  other 
studies, chimps were able to perform a similar task (Rumbaugh, 1977) – the apes failed to 
learn this  simple correspondence.  Apparently,  the purpose of  the exercise  was not  salient 
enough: a case is reported where a chimp lies down on his back while pressing the right 
button by mistake, after which he repeatedly tries out this procedure in subsequent trials – 
presumably under the superstitious impression that not the button caused a reward, but his 
posture. No matter how obvious the function of a button may be to us, the chimps fail to 
notice how to operate the lexigram board, likely due to the high amount of possible causes for 
a reward. 

In the second experiment the setup is changed, allowing for the chimps to notice the relation 
between objects and lexigrams. First, one object is shown while only one button is available. 
After learning this initial  correspondence relation,  more buttons and objects are gradually 
added to the realm of possible lexigram-object combinations. Using this learning method, 
several apes seemed to catch on to the meaning of the lexigrams and started to construct 
correct sentences in order to obtain their reward. 

The purpose of  this  chapter  is to find a suitable experiment  demonstrating the difference 
between  indexical  and  symbolic  interpretation,  so  let  us  investigate  how  to  model  the 
chimpanzee learning process with neural  networks.  Ideally,  one would like to present  the 
objects and lexigram board in exactly the same way as the chimps perceive it, for instance by 
showing the neural network an image of a banana and expecting it to maneuver a robotic arm 
to press the right button. However, due to practical limitations – visual recognition of objects 
and robotic manipulation techniques are not in our direct interest here - we will confine the 
setup to a rather crude simplification of the original experiment, abstracting away from the 
particular objects used and focusing merely on the characteristics of the different kinds of 
interpretation processes. To this end, we shall represent both the objects and the lexigrams as 
binary strings consisting of ten bits, as shown in Table 1. 
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Table 1  Binary representation of objects and lexigrams. The network is trained  
to map corresponding objects to lexigrams, appearing on the same row in this  
table.

Note that the binary string representations may be interpreted as icons, in the same way as 
objects or lexigrams can be icons. Since we are primarily concerned with discovering how 
the  network  represents  a  correlation  between  two  icons,  the  characteristics  of  the  icons 
themselves are irrelevant at this point. The object-lexigram index can be modeled using a 
feed-forward neural network, as explained in the previous chapter. We use a fully connected, 
three-layer  network, with each layer containing ten nodes10.  The nodes are activated by a 
weighted sum over the incoming edges, with a step activation threshold function. 

Following the training method of the chimp experiment, we start  out by using the binary 
string corresponding to a banana. Once the network has learned to output the correct lexigram 
– in this case, the string 1000000000 - a second object is added to the set of possible input 
strings.  This  continues  until  all  object-lexigram indices  have been learned.  Note  that  the 
network, while learning new indices, also has to remember all previously learned relations.

To train the network, a genetic algorithm is used. A network may be encoded as a string 
containing all the information about the strengths of its edges11. At the start of a learning run, 

10 Considering the input and output strings, using eight nodes per layer would theoretically be 
sufficient for this experiment as we use a maximum of eight objects. However, because subsequent 
experiments require networks with up to ten nodes we will use same-sized networks throughout this 
thesis, allowing for a better comparison of the results.
11 The phenotypes are encoded as genotypes using Gray encoding, each weight being represented by 
four bits.
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Network Input Binary Correct Output Binary

Bananaobject 1000000000 Bananalexigram 1000000000

Orangeobject 0100000000 Orangelexigram 0100000000

Appleobject 0010000000 Applelexigram 0010000000

Cokeobject 0001000000 Cokelexigram 0001000000

OrangeJuiceobject 0000100000 OrangeJuicelexigram 0000100000

etc. … … …



a population of such strings is randomly generated. Each individual network is then tested by 
giving it a number of input sequences and checking what percentage of the output strings is 
correct. After the entire population of networks has been tested in these trials, the ones with 
the highest scores survive12 and are passed on to the next generation. Finally, new offspring is 
generated in the form of randomly mutated variants of their genotype, or by combining two 
genotypes  into  one,  the  biologically  inspired  cross-over  process.  In  each  subsequent 
generation cycle, there is a tendency for the generated offspring to achieve higher scores; 
eventually, it is likely that a network configuration will be reached in which all indices are 
represented.  The  parameters  of  this  genetic  algorithm  we  used  for  this  experiment  are 
displayed in Table 2.

Parameter Value

Input layer neurons: 10

Hidden layer neurons: 10

Output layer neurons: 10

Neuron threshold (θ): 0.40/0.8513

Number of children in each generation: 50
Number of elites in each generation: 10

Mutation chance: 1%

Number of learning runs: 100

Table 2  The parameters of the genetic algorithm, as used for all experiments in  
this thesis.

12 As a selection method, we use truncated selection: the highest-scoring individuals are passed on the 
next generation and allowed to randomly procreate.
13 The threshold was set to 0.40 when the sum of input values was 1; if the total input values added up 
to 2, a threshold of 0.85 was used. Ergo, in the naming task and the domain knowledge task, each of 
the neurons had a lower threshold value. This measure was taken in order to allow for a more fair 
comparison between similar networks with different kinds of input, and to make the learning algorithm 
converge faster towards a solution. As the indexical and symbolic tasks have the same threshold value, 
this difference did not affect the results of those experiments in any way.
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Figure 9   The results of the naming task experiment, averaged over 100 runs. A  
neural network is trained to associate objects with lexigrams. For each new object  
(x-axis), the number of generations it took for the network to learn the additional  
correspondence relation is shown. Note that the learning time will not necessarily  
increase as more objects are added: an efficient learning algorithm might exploit  
information redundancies and find a way to learn each object in a fewer number of  
generations.

The figure above shows the number of generations it takes for the network to learn a correct 
mapping from object  to  lexigram.  The results  clearly indicate  that  each additional  object 
significantly increases the time necessary to learn the new correlation. This can be attributed 
to the limited working memory capacity of the network: the first object to be learned has a 
relatively  high  rate  of  correct  network  configurations,  while  the  number  of  possible 
configurations for learning the fourth index is constrained by the necessity of keeping the 
former three indices intact. 

Learning Symbols

Let’s imagine ourselves in a chimp’s position for a moment. Suppose we encounter a drink 
vending  machine,  which  allows  us  to  select  a  can  of  soda  from a  variety  of  beverages 
displayed through a glass window. A can may be selected by pressing two digits on a panel 
attached to the machine. As we have never operated this particular device before, we might 
be inclined to randomly press several buttons until a can rolls out of the machine. After a 
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number of attempts we will likely notice a pattern: every time some sequence of buttons is 
pressed, the device dispenses a can of soda. We learn that, in order to obtain a particular 
drink,  we need to  memorize  the  corresponding  combination  of  buttons.  However,  as  the 
number of learned combinations grows it becomes increasingly difficult to memorize new 
button combinations. The chimpanzees are faced with a similar problem. It appears that they 
merely learn an indexical  relation between a stimulus object  and a lexigram token being 
pressed. However, the genuine acquisition of a language would require a symbolic bond. Like 
the apes in other experiments which, it was claimed, could learn over a thousand words, these 
chimps had learned a set of stimulus-action pairs: the use of tokens

… may […] be simply a set of events which come to precede the receipt of a  
desired action or object.  […] errorless trials, though given in a fashion which  
closely approximates that of the final choice, do not lead to symbolic learning  
even in simple tasks such as food names. 

(Savage-Rumbaugh, 1978, p. 283)

The third experiment conducted by Savage-Rumbaugh was aimed to demonstrate how the 
sentences constructed by the chimpanzees were actually holophrases, that is, sentences that 
function as words. The ape subjects were required to use the correct verb when requesting a 
particular  food item. For  example,  when asking for  a  banana they had to press  both the 
banana lexigram and the give lexigram. When they wanted orange juice, the pour lexigram 
had to  be  used.  If  the  apes  were  using the  lexigrams as  symbols,  one would expect  the 
learning rate to increase when more new objects are added, since the give and pour lexigrams 
were already known. However, this was not the case with the experiments: when a new object 
was introduced, the apes failed to properly use the verbs out of their common context and had 
to learn the lexigram verb-noun combination from scratch – even though they knew which 
objects were usually given and which were poured. 

We aim to devise a language training experiment for neural networks that shows this kind of 
behavior. In particular, we want to show that the indexical neural network learns to construct 
holophrases,  while  a  symbolic  network,  being  able  to  relate  lexigram  sentences  to  its 
knowledge of objects, will apply a different learning strategy we will call symbolic learning. 
To train the indexical network, we will alter the learning task of the previous section slightly: 
instead of words, whole sentences need to be constructed. Therefore, a pattern now represents 
a concatenation of a noun and a verb. We will once again use a neural network and train it to 
correlate the binary strings shown in Table 3. Also, a bias unit is added at the end of each 
input sequence to allow for a valid comparison with the symbolic network. The type of object 
– e.g. edible or liquid – is alternated after each added object. Figure 10 shows the average 
number of generations it takes for each object to be learned.
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Table  3   Binary  representation  of  the  objects  and  corresponding  lexigram 
sentences.  A  network  trained  on  this  data  will  produce  the  equivalent  of  a  
holophrase. Note the slight dip at the third object: because an object of an already  
known type – an edible, in this case – is added, the network tends to learn the  
output sentence associated with this object faster. The results are averaged over  
100 runs. 

Figure  10   The  learning  curve  of  the  indexical  sentence  construction  task,  
averaged over 100 runs.
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Network Input Binary Correct Output Binary

Bananaobject + bias 1000000001 Bananalexigram +  Givelexigram  1000000010

Orangeobject + bias 0100000001 Orangelexigram +  Givelexigram  0100000010

Appleobject + bias 0010000001 Applelexigram +  Givelexigram  0010000010

Cokeobject +  bias 0001000001 Cokelexigram +  Pourlexigram  0001000001

OrangeJuiceobject + bias 0000100001 OrangeJuicelexigram +  Pourlexigram  0000100001

etc. … … …



For the symbolic system, a different training set is used; unlike the indexical interpreter, this 
system’s knowledge is not limited to the input object. It also uses its knowledge of the object 
itself, and how it is related to other objects or actions. We train a network on this domain 
knowledge using the training data of Table 4. Figure 11 shows the resulting graph.

 

Table 4  Binary representation of the objects and corresponding actions.

Figure 11  The results of the domain knowledge task, averaged over 100 runs.  
Note that it converges to a solution in relatively few generations.
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Network Input Binary Correct Output Binary

Bananaobject 1000000000 Giveaction 0000000010

Orangeobject 0100000000 Giveaction 0000000010

Appleobject 0010000000 Giveaction 0000000010

Cokeobject 0001000000 Pouraction 0000000001

OrangeJuiceobject 0000100000 Pouraction 0000000001

etc. … … …



Now, this domain knowledge may be used by the symbolic network to produce lexigram 
sentences. If we present the data in such a way to the network that it will notice this higher-
order  correlation,  it  may  exploit  the  redundancy  in  the  two  indexical  systems  and  use 
lexigrams  to  denote  objects.  Ultimately,  we  would  like  to  use  three  neural  networks  to 
represent the three indexical systems that consitute a symbolic interpreter. However, in order 
not to complicate  things too much14,  we will  assume the two domains have already been 
learned and incorporated into the training set,  and use a single network to learn from the 
training data  shown in Table 5.  The data  is  constructed from concatenated binary strings 
representing objects, actions or lexigrams, much like the indexical learning task. The only 
difference is the bias unit being replaced by the output of the domain knowledge task; the 
symbolic  network  gains  an  advantage  when  it  finds  the  meaning  of  this  extra  bit  of 
information by linking the lexigram domain to the object domain by virtue of a higher-order 
correlation. Figure 12 shows the resulting learning curve of this task. 

Table 5  Binary representation of the input and output sentences of the symbolic  
task. Although there is only minimal difference with the indexical task – the input  
string is sometimes altered by one bit - this extra domain knowledge is enough to  
cause a significantly more efficient learning strategy. 

14 To limit the scope of this thesis, a setup with three indexical networks will not be treated here. 
However, the potentials of such a model will be shortly discussed in the final part of this thesis.
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Network Input Binary Correct Output Binary

Bananaobject +  Giveaction 1000000010 Bananalexigram +  Givelexigram  1000000010

Orangeobject +  Giveaction 0100000010 Orangelexigram +  Givelexigram  0100000010

Appleobject +  Giveaction 0010000010 Applelexigram +  Givelexigram  0010000010

Cokeobject +   Pouraction 0001000001 Cokelexigram +  Pourlexigram  0001000001

OrangeJuiceobject +  Pouraction 0000100001 OrangeJuicelexigram +  Pourlexigram  0000100001

etc. … … …



Figure 12  The learning curve of the symbolic task, averaged over 100 runs.

Comparison of Results

Let’s reconsider our example with the soda vending machine. We have seen how memorizing 
key  combinations  taxes  working  memory,  since  every  single  holophrase  has  to  be 
remembered.  However,  if  there  is  an  underlying  logic  to  the  key combinations,  we  can 
employ a  different  learning  strategy which  allows  us  to  make  use  of  the  glass  window 
displaying the cans. Suppose the cans of soda behind the glass are all lined up in an orderly 
fashion, with the top row containing only coke brands, the row below it being filled with 
different  orange  juice  cans,  and so on.  Suppose the  two buttons  that  need to  be  pressed 
indicate the respective row and column of the can that will be dispensed. If we carefully 
study the relation between the process inside the machine and the button combinations, we 
may suddenly discover the symbolic meaning of the buttons: the first number is a symbol for 
a type of drink. No longer will we string the buttons together into a holophrase, but each of 
them is used as a separate word in a sentence.

The fourth and final chimp experiment follows a comparable strategy. The apes’ attention is 
drawn towards the food and drink dispensers by increasing their saliency both audibly and 
visually. The chimps now notice a dispenser opening, even if it is empty. This allows them to 
draw conclusions about the syntactic and semantic soundness of the produced sentence. Two 
out of four chimpanzees switched to a different learning strategy: instead of memorizing all 
possible holophrases, they started paying attention to the relation between the two – object 
and lexigram -  domains.  It  is  argued that  this  difference  can be ascribed  to  the  learning 
strategy of the apes: some of them, producing a kind of stimulus-response holophrase, had 
learned the task through indexical  learning.  Others  used symbolic  learning to relate  their 
object knowledge to the task. 
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Sorting Objects:

Chimp Name Total Trials to 
Training Criterion

Total Errors During 
Training

Test (correct/trials)

Lana 160 19 10/10

Sherman 1115 200 not given

Austin 1210 252 not given

Labeling Objects:

Chimp Name Total Trials to 
Training Criterion

Total Errors During 
Training

Test 
(correct/trials)

Lana 1493 199 3/10 (retest: 1/10)
Sherman 852 68 9/10
Austin 3239 429 10/10

Table 6  Chimpanzee learning curves on two different tasks: sorting objects vs.  
labeling  objects  (Savage-Rumbaugh,  1978).  The  sorting  task  merely  required  
iconic skills, while the object labeling task was setup in such a way that a symbolic  
learning strategy was advantageous.

Table 6 above, taken from the original chimp training article, contains the training results of a 
similar experiment for three chimpanzees. Although the amount of data is rather limited, the 
results clearly show a difference between  Lana on the one hand and  Sherman and  Austin, 
who have allegedly adopted a symbolic learning strategy, on the other. Lana can easily sort 
different objects without any error, a task that is far more difficult for Sherman and Austin. 
On a superficial level, Lana appears to have grasped the training data at a faster rate than the 
other  two  chimps;  however,  on  a  task  requiring  a  deeper  understanding  of  the  objects 
involved, she performs quite differently. Even after extensive training she consequently fails 
to label  objects correctly.  The researchers  conclude that  Sherman and Austin,  contrary to 
Lana,  take their  time to  understand  the  underlying system, resulting in  much higher  test 
scores.

We can discern  the  same patterns  from the  neural  network experiments  described  in  the 
previous sections. Our indexical interpreter makes the same kind of superficial connection 
between an input object and a correct output sentence - a holophrase. The symbolic network 
uses its domain knowledge to understand the system underlying the token manipulation, in 
order to discover the meaning of these symbols. Although we might presume this domain 
knowledge to be  readily available  to the  network,  we will  add the training  time for this 
network to the symbolic network training time, since we aim to make a fair comparison. The 
resulting graph, containing the learning times of all experiments, is presented below.
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Figure 13  The results of the indexical and symbolic networks compared, averaged  
over 100 runs. Note that the domain knowledge task takes an almost trivial amount  
of time to learn. 

When comparing  these  graphs  to  the  data  from the  tasks  in  Table  6,  one  may notice  a 
similarity and a difference. In both cases, the symbolic approach turns out to produce the 
most efficient results in the long run. Even if the training time of the domain knowledge task 
is added to the symbolic network’s learning curve, the amount of time required to learn a new 
sentence is roughly half the time an indexical interpreter needs for the same task. The chimp 
experiments  show a similar  tendency.  But the results  differ  in another  respect.  While the 
symbolic chimps need time to discover the relation between the objects and the lexigrams, 
the  symbolic  network  outperforms  the  indexical  network  straight  from  the  start.  This 
dissimilarity can be attributed to the simplification we mentioned earlier:  we have used a 
single feed-forward network instead of three distinct networks. We have made sure that the 
training data has been setup in such a way that the network will quickly discover the higher-
order link. In many situations, such as the chimp experiment, this kind of neatly structured 
data will not be directly available and the network will have to search for new correlations 
among its indices, thereby slowing down the learning process. 

Naturally, the differences between chimp brains and neural networks are plentiful – not only 
do they differ in size, but also in features such as network architecture or type of input - 
making it hard to compare the two. However, the purpose of these experiments is not simply 
to show their likeness. Rather, we intend to unveil an underlying logic that applies to all these 
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experiments,  a  logic  in  which  we can  express  the  general  differences  between  indexical 
learning  and  symbolic  learning.  This  logic,  captured  by Peirce’s  semiotics,  allows  us  to 
investigate the structure of neural networks, experiment with their behavior and compare the 
resulting learning curves. The future research potential of using this underlying logic will be 
briefly discussed in the final chapter of this thesis. 

51



Chapter 6: Stepping down the Merry-go-round

Conclusion

“No one suspects that when a parrot says, “Pretty bird!” he really “knows” that  
these sounds are supposed to refer to his (or another bird’s) appearance. He has  
learned to mimic the sound of the words, that’s all. Sometime in the past he was  
rewarded for producing this phrase […] and he now produces it spontaneously.  
But what if he is taught to say, “Wanna cracker!” and rewarded with a cracker  
every time he says it? Presumably, when he wants a cracker, he will say so. Is this  
different? Should we now say that he knows what the words mean?

(Deacon, 1997, p. 25)

The  use  of  language  is  closely related  to  meaning  and  understanding.  Words  and  other 
symbols  cannot  be  seen apart  from the interpreting systems that  attach meaning to these 
tokens. The parrot example above, taken from The Symbolic Species (Deacon, 1997), shows 
how a sensible use of tokens does not automatically imply a correct understanding of such a 
sentence. Although the parrot’s request may appear quite reasonable to us, it has not attached 
any meaning to the words – the parrot’s utterance is merely a pre-learned action invoking the 
distribution of a cracker. We have argued throughout this thesis that the difference between 
such a  straightforward response and a genuine  understanding of  symbols  is  an important 
distinction, one that is regularly overlooked. 

The Chinese Room Argument suggests that the same difference also applies to human and 
computer symbol processing. Some disagree with Searle’s argument, claiming that it is too 
unspecific  or  founded on a misconception of human brain processing;  however, we have 
shown that at the root of the argument lies a misconception of the word symbol. Computers 
manipulate  tokens  following  a  fixed  set  of  indexical  rules.  However,  as  they  lack  the 
symbolic skill of finding new relations among networks of indices, one cannot maintain that 
computers are symbolic interpreters; rather, they treat tokens as icons or indices. This claim is 
supported by the Symbol Grounding Problem: it is theoretically impossible for computers to 
understand symbols,  as a translation of meaningless tokens into other meaningless tokens 
merely  leads  to  infinite  regress.  The  main  research  question  of  finding  a  symbolic 
representation  now becomes  even  more  relevant  to  AI:  if  humans  can  use  symbols  but 
computers can’t, then what kind of artificial system is capable of symbolic interpretation?

We revert to the theory underlying interpretation. The interpretant, being the mental reaction 
of an interpretation process, is itself a potential new sign for another interpretation. In chapter 
three we have learned how the three kinds of signs – icon, a sign based on similarity; index, 
based on association and symbol, based on convention – are hierarchically related. Each and 
every interpretation starts out with a recognition process, an iconic interpretation. The iconic 
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interpretant forms the starting point for an indexical interpretation, which ends with another 
icon. The two are indexically linked by virtue of a higher-order icon: the similarity of all the 
occasions in which they occurred together. Thus, an index consists of a triadic relation of 
icons; much in the same way, a symbol consists of a triadic relation of indices. Two indices 
represent  the associative relations in their  respective domains.  A third,  higher-order index 
links these two together, based on a particular iconism among both networks of indices. 

Due to the hierarchical nature of signs, it is required for any symbolic system to possess all 
three kinds of interpretation skills. In order to design an artificial symbolic system and at the 
same time show how its behavior contrasts with an indexical system, we choose to model the 
three  interpreters  using  neural  networks,  allowing  for  a  valid  comparison  among  these 
models. The typical iconic neural network consists of a feed-forward network architecture, 
able to classify incoming data. Furthermore, it is argued that a recurrent neural network is a 
plausible candidate for indexical interpretation, although, given the right training data, a feed-
forward structure may also be used. Considering the scope of the main research question, we 
opt for the less complicated, second option. We will, however, briefly touch upon the subject 
of recurrent networks in the following section.

Finally, in order to model a system capable of representing symbols we have formulated a 
new type of network architecture. Two different indexical networks represent two domains of 
indices, while a third relates them by virtue of their commonalities, allowing for a mapping 
from one domain to the other. As such, we find this hierarchical structure, which we will call 
Emerging Neural Network, to be a fitting structure for symbolic representation: the higher-
order network gains insight into the topology of the indexical relations of the networks below. 
Using the redundancy of this information it links the two domains together, thereby creating a 
framework of symbolic reference with a degree of freedom unprecedented by the indexical 
system. Again,  we aim to  keep the  experiments  uncomplicated  and  model  the  Emerging 
Neural Network using a feed-forward architecture.
 
The  results15 of  the  language  training  task  in  the  final  chapter  demonstrate  a  significant 
difference between the indexical and symbolic neural network.  The former shows a steep 
learning  curve,  as  learning  time  increases  each  time  new  sentences  are  added  to  its 
vocabulary. While the latter learns the first few sentences at roughly the same rate, it soon 
notices  a  correlation  among  the  indices  of  the  object  and  lexigram domains.  Using  the 
redundancy of this data, the symbolic system promptly becomes able to learn new sentences 
at a much faster rate than its indexical counterpart.

15 See Figure 13
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Discussion

Considering the extensiveness of the topic and the broad range of disciplines required for this 
study, we will not only provide a summary of the results but also an evaluation in which the 
outcome is matched against our original goals. So, to what extent have we found an answer to 
the main research question? Is it fair to say that we have developed a model for representing 
symbols, and shown its advantages over non-symbolic systems? As we had predicted in the 
introduction, the answers to these complex questions are not straightforward. 

The definition of the Symbol Grounding Problem suggests that the cause of a computer’s 
incapability for understanding language lies in the absence of a link between its perceptions 
and its symbol representation. It lacks a sub-symbolic, intermediate layer that connects both 
domains.  Harnad argues  that  this  layer  could never  be  established  by redefining existing 
symbols: since those rewrite rules will only lead to other symbols, the original symbols will 
never be  grounded in perceptions – the so-called  symbolic merry-go-round. Clearly, a new 
approach is required in dealing with this problem. In order to find an effective model for the 
intermediate layer, we have studied the symbol interpretation capabilities of the computer. 
Our semiotic analysis has shown that computational symbols are, in fact, icons. Although 
computers deal with tokens that have meaning to us, this does not necessarily imply a relation 
between the tokens and their referents exists for the computer. It merely treats these tokens as 
icons and indices. Given the vertical structure of the sign hierarchy, the computer’s symbolic 
qualities need to be built on a foundation of icons and indices, allowing for the symbols to 
emerge from this  sub-symbolic  layer.  Therefore,  we have proposed to adopt  a bottom-up 
approach to model this intermediate layer from icons to symbols.   

Using neural networks, we have shown how to translate this hierarchically layered model in a 
concrete structure. This newly developed layered neural network demonstrates how insight in 
its own interpretation process is an essential element of symbolic interpretation, and opens up 
the possibility of designing a computer model with symbolic qualities.  Note that creating 
such  a  computer  simulation  leaves  open  the  question  whether  computers  themselves can 
represent symbols. But we will not treat this question here, as it opens up a discussion about 
the ontological nature of simulations that lies far beyond the scope of this research. The point 
we want to make is that models such as neural networks are fit for representing symbols – 
possibly, even more fit than regular computational structures. 

The goal of the experiments was to test whether a significant difference exists between the 
interpretation qualities of the indexical and symbolic systems, as part of the main research 
question. However, the acquired results should not be regarded as definite proof for finding a 
structure that adequately models the sign hierarchy. Rather, it serves as a proof-of-concept, 
indicating that the hierarchical composition of symbols is a universal trait of symbol systems, 
both in neural networks and chimpanzees. After all, the underlying semiotic theory and the 
correct  transformation  to  a  neural  network model  are  examined in  the  experiments.  It  is 
important  to  note  that  several  simplifications  to  the  model  have  been  made  in  these 
experiments: we have imposed boundaries on this model in order to reduce its complexity, by 
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explicitly representing the domain knowledge in the learning data table. Although this setup 
allowed us to use a simple feed-forward network, facilitating an easy comparison among the 
different models, it is not yet as sophisticated as we want it to be. Eventually, the symbolic 
neural network needs to be able to create new conventions without any preconceived learning 
data  –  ideally,  it  recognizes  these  relationships  amongst  its  own interpretation  processes 
without  any  preconceived  learning  goals.  However,  in  order  to  achieve  this,  the  theory 
describing these emerging neural networks requires additional research. 

We can attempt to point out the general directions towards which continued research might 
develop.  Concerning  the  iconic  interpreter,  we have already seen  how classification  is  a 
common  task  for  many  types  of  neural  networks.  The  option  of  using  recurrent  neural 
networks to learn indexical connections is hinted at in chapter four, as (Elman, 1990) shows 
their aptitude for learning associations. Even though our experiments show a feed-forward 
network can represent indices as well, the recurrent system appears to be able to handle less 
structured data better. Similarly, the symbolic network should theoretically be composed of 
three  hierarchically  ordered  indexical  networks  to  allow  for  a  genuinely  symbolic 
interpretation of its perceptions. How exactly such a meta-network will operate on the other 
two networks, is an open question that remains to be answered. However, we can suggest that 
the realization of such a model will  likely be based on cybernetics,  self-learning systems 
research and emergence theory. 

The Emerging Neural Network theory presented in this thesis has the potential for filling the 
gap between symbols and perceptions that is exemplified by the Symbol Grounding Problem. 
It provides a basic prototype for a sub-symbolic system, consisting of icons and indices, out 
of which symbols can emerge. It explains why a symbolic system demonstrates a different 
learning behavior from a purely indexical system’s behavior. We have presented a model for 
which stepping down the symbolic merry-go-round is not a problem - it simply never gets on 
the ride in the first place.
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